XGS - AHDC1 - Update

Richard Gibbs AC Ph.D.,

Baylor College of Medicine – Human Genome Sequencing Center

TCATTTCAACC
CCTCCACGGAC
TGCCTCAAGCG
CGGCGTCGCCC
GGTTGACCTCG
AGTTTTTCCTTC

DISCLOSURES:

- Honorary advisor to Geneial,
- BCM is a joint owner of Baylor Genetics Laboratories (BGL)
- BCM owns stock in Codified Genomics

Thanks

- Emily, Monica, XGS Society,
- Families for sharing your day,
- Jianhong Hu,
- Scientific colleagues:
 - Jennifer Posey, M.D., Ph.D.
 - Davut Pehlivan, M.D.
 - Claudio Cinquemanni, CureRare,
 - Adam Hansen, Ph.D.
 - Anthony Oro, M.D.
 - Bo Yuan, Ph.D.,

James Lupski, M.D., Ph.D.

David Murdock, M.D., Ph.D.

Baylor College of Medicine Research on XGS and AHDC1

Past -Lab

Yunyun Jiang Shoudong Li Michael Khayat Varuna Chander *Adam Hansen

Clinical Genetics (M.D.)

David Murdoch Michael Wangler *Jennifer Posey James Lupski *Davut Pehlivan

Present - Lab

Harsha Doddapaneni

Heer Mehta

Bo Yuan

Eric Venner

Aniko Sabo

*Presenting today

** Supported by

Xia-Gibbs Society

*Jianhong Hu** Mullai Murugan

Moez Dawood

The XGS Registry – May 2024, More from Jianhong later today

- · First step to understanding XGS basics and to accessing individuals and families,
- Began in 2014
- 503 XGS individual, worldwide
- 179 in the Registry
- Updates from Geneial (Adam Hansen)

Jianhong Hu

Mullai Murugan

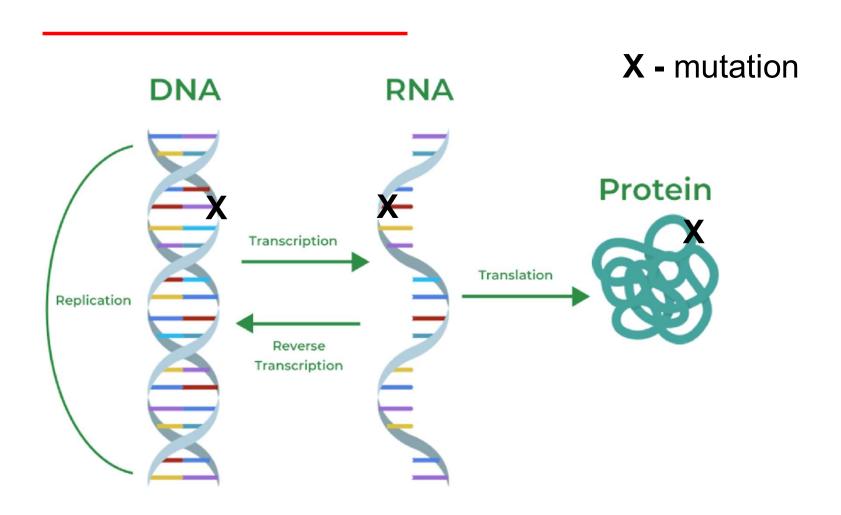
Xia-Gibbs Syndrome Groups

XGS Society (Australia, USA)

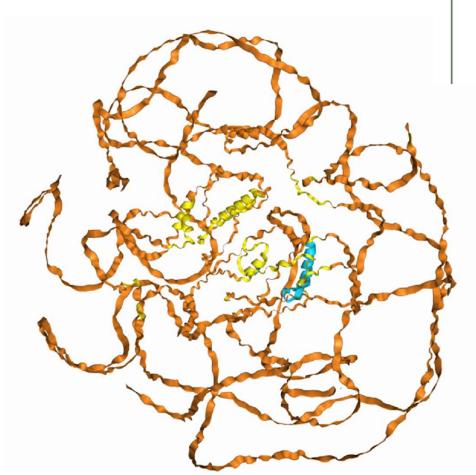
RECENTLY DIAGNOSED?

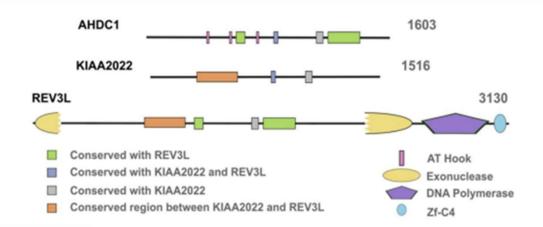
UK Group

Italy


Germany

Xia-Gibbs Syndrome


Questions:


- What does the protein do?
- What about other mutations?
- Is the disorder:
 - 'gain of function' (ie 'bad' version causes XGS)?
 - or 'haploinsufficient' (ie absence of enough good AHDC1 causes XGS)?

Quick Genetics Lesson: Genes in DNA-> Protein

AHDC1:
Mostly 'intrinsically disordered',

Mutations:

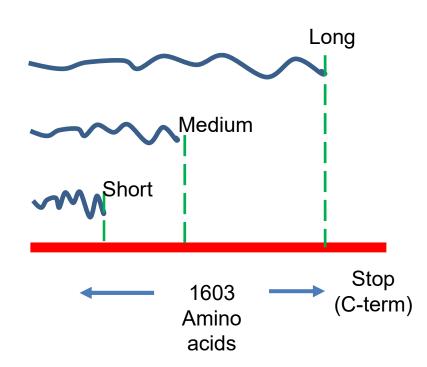
- 1: Mostly 'truncation'
- 2: Some amino acid changes
- 3: Some deletions

AHDC1

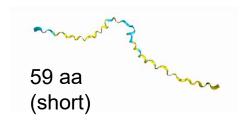
AHDC1

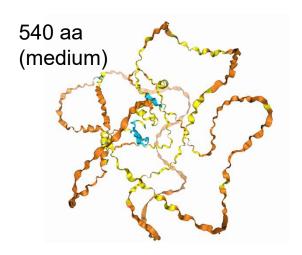
1603

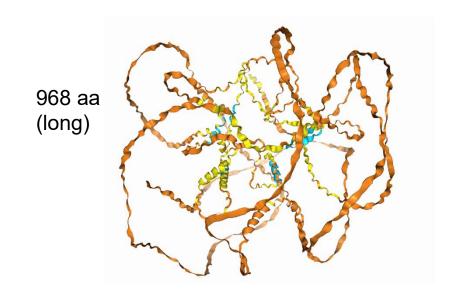
Effect of Mutation Length:


1: Short may = 'mild'

2: Medium may = severe


3: Long may = variable


Exceptions:


1: Same mutation, different outcome,

AHDC1 Truncations (alphafold 3): not informative

AHDC1: Mechanism

HGG Advances

ARTICLE

1: Some amino acid changes do cause XGS – but not all

AHDC1 missense mutations in Xia-Gibbs syndrome

Michael M. Khayat, ^{1,2,14} Jianhong Hu, ^{1,14} Yunyun Jiang, ^{1,14} He Li, ¹ Varuna Chander, ^{1,2} Moez Dawood, ^{1,2,3} Adam W. Hansen, ^{1,2} Shoudong Li, ¹ Jennifer Friedman, ⁴ Laura Cross, ⁵ Emilia K. Bijlsma, ⁶ Claudia A.L. Ruivenkamp, ⁶ Francis H. Sansbury, ⁷ Jeffrey W. Innis, ⁸ Jessica Omark O'Shea, ⁹ Qingchang Meng, ¹ Jill A. Rosenfeld, ² Kirsty McWalter, ¹⁰ Michael F. Wangler, ^{2,11} James R. Lupski, ^{1,2,12,13} Jennifer E. Posey, ² David Murdock, ^{1,2} and Richard A. Gibbs^{1,2,*}

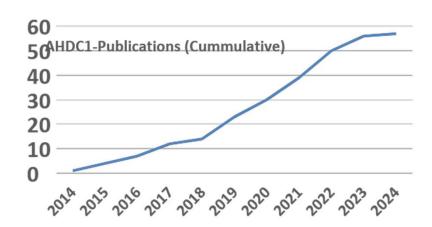
- 2: Do large deletions cause XGS?
- We say 'no',
- Other evidence says 'maybe'

Received: 2 May 2022 | Revised: 17 August 2022 | Accepted: 30 August 2022 | DOI: 10.1002/humu.24461 | Human Mutation | HGV | WILEY

Long read sequencing and expression studies of AHDC1 deletions in Xia-Gibbs syndrome reveal a novel genetic regulatory mechanism

```
Varuna Chander<sup>1,2</sup> | Medhat Mahmoud<sup>1,2</sup> | Jianhong Hu<sup>2</sup> | Zain Dardas<sup>2</sup> | Christopher M. Grochowski<sup>2</sup> | Moez Dawood<sup>1,2</sup> | Michael M. Khayat<sup>1,2</sup> | He Li<sup>1</sup> | Shoudong Li<sup>1</sup> | Shalini Jhangiani<sup>1</sup> | Viktoriya Korchina<sup>1</sup> | Hua Shen<sup>1</sup> | George Weissenberger<sup>1</sup> | Qingchang Meng<sup>1</sup> | Marie-Claude Gingras<sup>1,2</sup> | Donna M. Muzny<sup>1,2</sup> | Harsha Doddapaneni<sup>1</sup> | Jennifer E. Posey<sup>2</sup> | James R. Lupski<sup>1,2,3,4</sup> | Aniko Sabo<sup>1</sup> | David R. Murdock<sup>1,2</sup> | Fritz J. Sedlazeck<sup>1,2,5</sup> | Richard A. Gibbs<sup>1,2</sup>
```

Conclude:


- Gain of Function' likely to operate
- Cannot exclude 'haploinsufficiency'
- Likely both mechanisms

Other Research on XGS and AHDC1?

Many countries now represented: USA, China, India, Italy, Iran, Denmark, Turkey, Brazil Mostly clinical correlates:

'Surprises'

- 1: Some cancer role for AHDC1
- 2: Possible RNA regulation circuit
- 3: Role in metabolism, obesity?
- 4: (unpublished) 'silenced' AHDC1 leads to alteration of other genes in cultured cells,
- no 'magic bullet' yet (Silvana Bochicchio, Ph.D., unpublished)

Important developments:

1: Gibbin study (later today)

2: iPSCs

Article

Gibbin mesodermal regulation patterns epithelial development

https://doi.org/10.1038/s41586-022-04727-9

Received: 31 December 2020

Published online: 18 May 2022

Check for updates

Accepted: 5 April 2022

Ann Collier¹, Angela Liu², Jessica Torkelson¹, Jillian Pattison¹, Sadhana Gaddam¹, Hanson Zhen¹, Tiffany Patel¹, Kelly McCarthy¹, Hana Ghanim² & Anthony E. Oro²≅

Proper ectodermal patterning during human development requires previously identified transcription factors such as GATA3 and p63, as well as positional signalling from regional mesoderm¹⁻⁶. However, the mechanism by which ectoderm and mesoderm factors act to stably pattern gene expression and lineage commitment remains unclear. Here we identify the protein Gibbin, encoded by the Xia-Gibbs

Anthony Oro

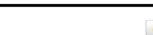
Contents lists available at ScienceDirect

Gene

journal homepage: www.elsevier.com/locate/gene

Methodological paper

Establishment of iPSC lines and zebrafish with loss-of-function *AHDC1* variants: Models for Xia-Gibbs syndrome


Laura Machado Lara Carvalho ^a, Elisa Varella Branco ^a, Raquel Delgado Sarafian ^b, Gerson Shigeru Kobayashi ^a, Fabiano Tófoli de Araújo ^b, Lucas Santos Souza ^a, Danielle de Paula Moreira ^a, Gabriella Shih Ping Hsia ^a, Eny Maria Goloni Bertollo ^c, Cecília Barbosa Buck ^d, Silvia Souza da Costa ^a, Davi Mendes Fialho ^a, Felipe Tadeu Galante Rocha de Vasconcelos ^a, Luciano Abreu Brito ^a, Luciana Elena de Souza Fraga Machado ^a, Igor Cabreira Ramos ^a, Lygia da Veiga Pereira ^b, Celia Priszkulnik Koiffmann ^a, Maria Rita dos Santos e Passos-Bueno ^a, Tiago Antonio de Oliveira Mendes ^e, Ana Cristina Victorino Krepischi ^a, Carla Rosenberg ^a, ^a

Contents lists available at ScienceDirect

Stem Cell Research

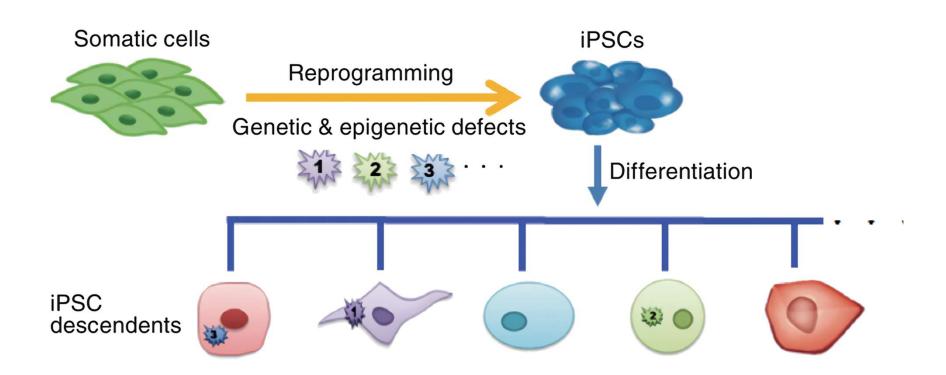
journal homepage: www.elsevier.com/locate/scr

Generation of a human induced pluripotent stem cell line (FDCHi010-A) from a patient with Xia-Gibbs syndrome carrying AHDC1

mutation (c.2062C > T)

Lab Resource: Single Cell Line

Tingting Yin^a, Bingbing Wu^a, Ting Peng^b, Yunfei Liao^a, Shuangyun Jiao^a, Huijun Wang^{a,*}


^a Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai 201102, China

b Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China

iPSCs: induced pluripotent stem cells

- Contain all the DNA of the donor
- Made from blood samples
- a tool for studying each different mutation in a different cell type
- A full range of iPSCs will allow a range of AHDC1 studies

Questions?